Data on the Heap

Next, let's add support for:

- **Data Structures**

In the process of doing so, we will learn about:

- **Heap Allocation**
- **Run-time Tags**

Creating Heap Data Structures

We have already support for two primitive data types:

```plaintext
data Ty = TNumber     -- e.g. 0,1,2,3,...
| TBoolean       -- e.g. true, false
```

We could add several more of course, e.g.:

- Char
- Double or Float
- Long or Short etc. (you should do it!)

However, for all of those, the same principle applies, more or less:

- As long as the data fits into a single word (4-bytes)
Creating Heap Data Structures

Instead, we’re going to look at how to make unbounded data structures

- Lists
- Trees

which require us to put data on the heap (not just the stack) that we’ve used so far.

Pairs

While our goal is to get to lists and trees, but we will begin with the humble pair.

First, let’s ponder what exactly we’re trying to achieve. We want to enrich our language with two new constructs:

- Constructing pairs, with a new expression of the form \((e_0, e_1)\) where \(e_0\) and \(e_1\) are expressions.
- Accessing pairs, with new expressions of the form \(e[0]\) and \(e[1]\) which evaluate to the first and second element of the tuple \(e\) respectively.

```plaintext
let t = (2, 3) in

(t[0]) + (t[1])
```

should evaluate to 5.

Strategy

Next, let’s informally develop a strategy for extending our language with pairs, implementing the above semantics. We need to work out strategies for:

- Representing pairs in the machine’s memory,
- Constructing pairs (i.e. implementing \((e_0, e_1)\) in assembly),
- Accessing pairs (i.e. implementing \(e[0]\) and \(e[1]\) in assembly).
1. Representation

Recall that we represent all values:

- **Number** like 0, 1, 2...
- **Boolean** like `true`, `false`

as a single word either

- 4 bytes on the stack, or
- a single register `eax`.

EXERCISE

What kinds of problems do you think might arise if we represent a pair `(2, 3)` on the stack as:

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
```

QUIZ

How many words would we need to store the tuple `(3, (4, 5))`:

- 1 word
- 2 words
- 3 words
- 4 words
- 5 words
Just about every problem in computing can be solved by adding a level of indirection.

We will represent a pair by a pointer to a block of two adjacent words of memory.

This shows how the pair (2, (3, (4, 5))) and its sub-pairs can be stored in the heap using pointers.

A Problem: Numbers vs. Pointers?

How will we tell the difference between numbers and pointers?

That is, how can we tell the difference between

- the number 5 and
- a pointer to a block of memory (with address 5)?

Each of the above corresponds to a different tuple

- (4, 5) or
- (4, (…)).

so it's crucial that we have a way of knowing which value it is.
Tagging Pointers

As you might have guessed, we can extend our tagging mechanism to account for pointers.

<table>
<thead>
<tr>
<th>Type</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>xx0</td>
</tr>
<tr>
<td>boolean</td>
<td>111</td>
</tr>
<tr>
<td>pointer</td>
<td>1</td>
</tr>
</tbody>
</table>

That is, for
- number the last bit will be 0 (as before),
- boolean the last 3 bits will be 111 (as before), and
- pointer the last 3 bits will be 001.

(We have 3-bits worth for tags, so have wiggle room for other primitive types.)

Address Alignment

As we have a 3 bit tag, leaving 32 - 3 = 29 bits for the actual address. This means, our actual available addresses, written in binary are of the form

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000000</td>
<td>0</td>
</tr>
<tr>
<td>000000100</td>
<td>8</td>
</tr>
<tr>
<td>000001000</td>
<td>16</td>
</tr>
<tr>
<td>000001100</td>
<td>24</td>
</tr>
<tr>
<td>000010000</td>
<td>32</td>
</tr>
</tbody>
</table>

That is, the addresses are 8-byte aligned. Which is great because at each address, we have a pair, i.e. a 2-word = 8-byte block, so the next allocated address will also fall on an 8-byte boundary.

2. Construction

To construct a pair \((e_1, e_2)\) we

- Allocate a new 2-word block, and getting the starting address at \(eax\),
- Copy the value of \(e_1\) (resp. \(e_2\)) into \([eax]\) (resp. \([eax + 4]\))
- Tag the last bit of \(eax\) with 1.

The resulting \(eax\) is the value of the pair

- The last step ensures that the value carries the proper tag.

\(\text{ANF will ensure that } e_1 \text{ and } e_2 \text{ are both immediate expressions which will make the second step above straightforward.}\)
EXERCISE

How will we do ANF conversion for \((e_1, e_2)\)?

Allocating Addresses

We will use a global register \(esi\) to maintain the address of the next free block on the heap. Every time we need a new block, we will:

- Copy the current \(esi\) into \(eax\)
- Set the last bit to 1 to ensure proper tagging.
- \(eax\) will be used to fill in the values
- Increment the value of \(esi\) by 8
- Thereby “allocating” 8 bytes (= 2 words) at the address in \(eax\)

Allocating Addresses

Note that if

- We start our blocks at an 8-byte boundary, and
- We allocate 8 bytes at a time,

then

- Each address used to store a pair will fall on an 8-byte boundary (i.e. have last three bits set to 0).

So we can safely turn the address in \(eax\) into a pointer * by setting the last bit to 1.

NOTE: In your assignment, we will have blocks of varying sizes so you will have to take care to maintain the 8-byte alignment, by “padding”.
Example: Allocation

In the figure below, we have

- a source program on the left,
- the ANF equivalent next to it.

```
Source                      ANF
let p = (3, (4, 5))          let anf0 = (4, 5)
    , x = p[1]              , p = (3, anf0)
    , y = p[2][1]           , x = p[1]
    , z = p[2][2]           , anf1 = p[2]
    in                     , y = anf1[1]
    x + y + z              , z = anf1[2]
    im                     , anf2 = x + y
    anf2 = anf2 + z
```

Example: Allocation

The figure below shows how the heap and esi evolve at points 1, 2 and 3:

QUIZ

In the ANF version, p is the second (local) variable stored in the stack frame. What value gets moved into the second stack slot when evaluating the above program?

- 0x3
- (3, (4, 5))
- 0x6
- 0x9
- 0x10
3. Accessing

Finally, to access the elements of a pair, i.e. compiling expressions like \(e[0] \) (resp. \(e[1] \))

- Check that immediate value \(e \) is a pointer
- Load \(e \) into \(eax \)
- Remove the tag bit from \(eax \)
- Copy the value in \([eax]\) (resp. \([eax + 4]\)) into \(eax \).

Example: Access

Here is a snapshot of the heap after the pair(s) are allocated.

<table>
<thead>
<tr>
<th>Source</th>
<th>ANF</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p = (3, {4, 5}))</td>
<td>(\text{let anf0 = {4, 5}})</td>
<td>(0)</td>
</tr>
<tr>
<td>(x = p[1])</td>
<td>(p = {1, \text{anf0}})</td>
<td>(4)</td>
</tr>
<tr>
<td>(y = p[2][1])</td>
<td>(\text{anf1} = p[2])</td>
<td>(8)</td>
</tr>
<tr>
<td>(z = p[2][2])</td>
<td>(y = \text{anf1}[2])</td>
<td>(12)</td>
</tr>
<tr>
<td>(x + y + z)</td>
<td>(\text{anf2} = x \times y)</td>
<td>(16)</td>
</tr>
<tr>
<td>(\text{ln anf2} + z)</td>
<td></td>
<td>(20)</td>
</tr>
</tbody>
</table>

Example: Access

Let’s work out how the values corresponding to \(x \), \(y \) and \(z \) in the example above get stored on the stack frame in the course of evaluation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hex Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>anf0</td>
<td>1</td>
<td>ptr:0</td>
</tr>
<tr>
<td>p</td>
<td>9</td>
<td>ptr:0</td>
</tr>
<tr>
<td>x</td>
<td>6</td>
<td>num:3</td>
</tr>
<tr>
<td>anf1</td>
<td>3</td>
<td>ptr:0</td>
</tr>
<tr>
<td>y</td>
<td>8</td>
<td>num:4</td>
</tr>
<tr>
<td>z</td>
<td>A</td>
<td>num:5</td>
</tr>
<tr>
<td>anf2</td>
<td>E</td>
<td>num:7</td>
</tr>
<tr>
<td>result</td>
<td>18</td>
<td>num:32</td>
</tr>
</tbody>
</table>
Plan

Pretty pictures are well and good, time to build stuff!

As usual, let's continue with our recipe:

- Run-time
- Types
- Transforms

We've already built up intuition of the strategy for implementing tuples. Next, let's look at how to implement each of the above.

Run-Time

We need to extend the run-time (`c-bits/main.c`) in two ways.

- Allocate a chunk of space on the heap and pass in start address to `our_code`.
- Print pairs properly.

Allocation

The first step is quite easy we can use `calloc` as follows:

```c
int main(int argc, char** argv) {
    int* HEAP = calloc(HEAP_SIZE, sizeof(int));
    int result = our_code_starts_here(HEAP);
    printf(result);
    return 0;
}
```

The above code,
- Allocates a big block of contiguous memory (starting at `HEAP`),
- Passes this address in to `our_code`.

Now, `our_code` needs to start with instructions that will copy the parameter into `esi` and then bump it up at each allocation.
Printing

To print pairs, we must recursively traverse the pointers until we hit number or boolean.

We can check if a value is a pair by looking at its last 3 bits:

```c
int isPair(int p) {
    return (p & 0x00000007) == 0x00000001;
}
```

Why is this sufficient?

Printing

```c
void print(int val) {
    if(val & 0x00000001 == 0x00000001) { // val is a number
        printf("%d", val >> 1);
    } else if(val == 0xFFFFFFFF) { // val is true
        printf("true");
    } else if(val == 0x7FFFFFFF) { // val is false
        printf("false");
    } else if(isPair(val)) {
        int * valp = (int*) (val - 1); // extract address
        printf("(");
        print(*valp);
        printf(",
    }
```

Types

Next, let's move into our compiler, and see how the core types need to be extended.

We need to extend the source Expr with support for tuples

```haskell
data Expr =
    ... | Pair (Expr a) (Expr a) a -- ^ construct a pair |
    GetItem (Expr a) Field a -- ^ access a pair's element
```

In the above, Field is

```haskell
data Field = First -- ^ access first element of pair |
    Second -- ^ access second element of pair
```

NOTE: Your assignment will generalize pairs to n-ary tuples using

* Tuple [Expr a] representing (e1,...,en)
* GetItem [Expr a] (Expr a) representing e1[e2]
Dynamic Types

Let us extend our dynamic types Ty see to include pairs:

```haskell
data $Ty = TNumber | TBoolean | TPair
```

Assembly

The assembly Instruction are changed minimally; we just need access to esi which will hold the value of the next available memory block:

```haskell
data Register = ... | ESI
```

Transforms

Our code must take care of three things:

- Initialize esi to allow heap allocation,
- Construct pairs,
- Access pairs.

The latter two will be pointed out directly by GHC:

- They are new cases that must be handled in `anf` and `compileExpr`
Initialize

We need to initialize esi with the start position of the heap, that is passed in by the run-time.

How shall we get a hold of this position?

To do so, our_code starts off with a prelude

```plaintext
prelude :: [Instruction]
prelude = [IMov (Reg ESI) (RegOffset 4 ESP) -- copy param (HEAP) off stack,
           IAdd (Reg ESI) (Const 8) -- adjust to ensure 8-byte aligned,
           IAnd (Reg ESI) (HexConst 0xFFFFFFF8) -- add 8 and set last 3 bits to 0]
```

• Copy the value off the (parameter) stack, and
• Adjust the value to ensure the value is 8-byte aligned.

QUIZ

Why add 8 to esi? What would happen if we removed that operation?

1. esi would not be 8-byte aligned?
2. esi would point into the stack?
3. esi would not point into the heap?
4. esi would not have enough space to write 2 bytes?

Construct

To construct a pair \((v1, v2)\) we directly implement the above strategy:

```plaintext
compileExpr env (Pair v1 v2)
  = pairAlloc
    -- 1. allocate pair, resulting addr in `eax`
    (+) pairCopy First (immArg env v1)
    (+) pairCopy Second (immArg env v2)
    (+) setTag EAX TPair
```

Let’s look at each step in turn.
Allocate

To allocate, we just copy the current pointer esi and increment by 8 bytes.

- accounting for two 4-byte (word) blocks for each pair element.

```
pairAlloc :: Asm
pairAlloc
  -- copy current "free address" 'esi' into 'eax'
  = [ IMov (Reg EAX) (Reg ESI)
      -- increment 'esi' by 8
      , IAdd (Reg ESI) (Const 8) ]
```

Copy

We copy an Arg into a Field by saving the Arg into a helper register ebx, and copying ebx into the field's slot on the heap.

```
pairCopy :: Field -> Arg -> Asm
pairCopy fld a
  = [ IMov (Reg EBX) a
      , IMov (pairAddr f) (Reg EBX) ]
```

The field's slot is either [eax] or [eax + 4] depending on whether the field is First or Second.

```
pairAddr :: Field -> Arg
pairAddr fld :: Sized DWordPtr
  = Sized DWordPtr (RegOffset (4 * fieldOffset fld) EAX)
```

```
fieldOffset :: Field -> Int
fieldOffset First = 0
fieldOffset Second = 1
```

Tag

Finally, we set the tag bits of eax by using typeTag TPair which is defined

```
setTag :: Register -> Ty -> Asm
setTag r ty = [ IAdd (Reg r) (typeTag ty) ]
```

```
typeTag :: Ty -> Arg
  -- last 1 bit is 0
  typeTag TNumber = HexConst 0x00000000
  -- last 3 bits are 111
  typeTag TBoolean = HexConst 0x00000007
  -- last 1 bits is 1
  typeTag TPair = HexConst 0x00000001
```
Access
To access tuples, let’s update `compileExpr` with our strategy:

```plaintext
compileExpr env (GetItem e fld)
  -- 1. Check that e is a (pair) pointer
  = assertType env e TPair
  -- 2. Load pointer into eax
  ++ [ IMov (Reg EAX) (immArg env e) ]
  -- 3. Remove tag bit to get address
  ++ [ unsetTag EAX TPair ]
  ++ [ IMov (Reg EAX) (pairAddr fld) ]
  -- 4. Copy value from resp. slot to eax.
```

We remove the tag bits by doing the opposite of `setTag` namely:

```plaintext
unsetTag :: Register -> Ty -> Asm
unsetTag r ty = ISub (Reg EAX) (typeTag ty)
```

N-ary Tuples
That’s it! Let’s take our compiler out for a spin, by using it to write some interesting programs!

First, let’s see how to generalize pairs to allow for

- triples \((e_1, e_2, e_3)\) \to \((e_1, (e_2, e_3))\)
- quadruples \((e_1, e_2, e_3, e_4)\) \to \((e_1, (e_2, (e_3, e_4)))\)
- pentuples \((e_1, e_2, e_3, e_4, e_5)\)

… and so on.

We just need a library of functions in our new egg language to

- Construct such tuples, and
- Access their fields.

Constructing Tuples
We can write a small set of functions to construct tuples (up to some given size):

```python
def tup3(x1, x2, x3):
    (x1, (x2, x3))

def tup4(x1, x2, x3, x4):
    (x1, (x2, (x3, x4)))

def tup5(x1, x2, x3, x4, x5):
    (x1, (x2, (x3, (x4, x5))))
```
Accessing Tuples

We can write a single function to access tuples of any size.

```
let yuple = (10, (20, (30, (40, (50, false))))))
in
$> \text{get(yuple, 0)}$
10
$> \text{get(yuple, 1)}$
20
$> \text{get(yuple, 2)}$
30
```

```
def tup3(x1, x2, x3):
    (x1, (x2, x3))

def tup5(x1, x2, x3, x4, x5):
    (x1, (x2, (x3, (x4, x5))))

let t = tup5(1, 2, 3, 4, 5)
in
, x0 = print(get(t, 0))
, x1 = print(get(t, 1))
, x2 = print(get(t, 2))
, x3 = print(get(t, 3))
, x4 = print(get(t, 4))
in
99
```

Accessing Tuples

How shall we write it?

```
def get(t, i):
    TODO-IN-CLASS
```
QUIZ

Using the above “library” we can write code like:

```plaintext
let quad = tup4(1, 2, 3, 4) in
  get(quad, 0) + get(quad, 1)
  + get(quad, 2) + get(quad, 3)
```

What will be the result of compiling the above?

1. Compile error
2. Segmentation fault
3. Other run-time error
4. 4
5. 10

QUIZ

Using the above “library” we can write code like:

```python
def tup3(x1, x2, x3):
    (x1, (x2, (x3, false)))

let quad = tup3(1, 2, 3) in
  get(quad, 0) + get(quad, 1)
  + get(quad, 2) + get(quad, 3)
```

What will be the result of compiling the above?

1. Compile error
2. Segmentation fault
3. Other run-time error
4. 4
5. 10

QUIZ

```python
def get(t, i):
    if i == 0:
        t[0]
    else:
        get(t[1], i-1)

-- get(t, 2) ===> get(t[1], 1) ===> get(t[1][1], 0)
```

```python
def tup3(x1, x2, x3):
    (x1, (x2, (x3, false)))

let quad = tup3(1, 2, 3) in
  -- quad = (1, (2, 3))
  -- quad[1] = (2, 3)
  -- quad[1][1] = (3, false)
  -- quad[1][1][1] = false
```
Constructing Lists

Once we have pairs, we can start encoding unbounded lists.

To build a list, we need two constructor functions:

```python
def empty(): false
def cons(h, t): (h, t)
```

We can now encode lists as:

```python
cons(1, cons(2, cons(3, cons(4, empty()))))
```

Accessing Lists

To access a list, we need to know
1. Whether the list `isEmpty`, and
2. A way to access the head and the tail of a non-empty list.

```python
def isEmpty(l):
    l == empty()
def head(l):
    l[0]
def tail(l):
    l[1]
```

Examples

We can now write various functions that build and operate on lists, for example, a function to generate the list of numbers between `i` and `j`:

```python
def range(i, j):
    if (i < j):
        cons(i, range(i+1, j))
    else:
        empty()
range(1, 5)
```

which should produce the result

```
(1,(2,(3,(4,false))))
```
Examples

and a function to sum up the elements of a list:

```python
def sum(xs):
    if (isEmpty(xs)):
        0
    else:
        head(xs) + sum(tail(xs))

sum(range(1, 5))
```

which should produce the result 10.

Recap

We have a pretty serious language now, with:

- Data Structures

which are implemented using

- Heap Allocation
- Run-time Tags

which required a bunch of small but subtle changes in the

- runtime and compiler

Recap

In your assignment, you will add native support for n-ary tuples, letting the programmer write code like:

```python
# constructing tuples of arbitrary arity
e1, e2, e3, ..., en

# allowing expressions to be used as fields
e1[e2]
```

Next, we’ll see how to

- use the “pair” mechanism to add higher-order functions and
- reclaim unused memory via garbage collection.
Recap

In your assignment, you will add native support for n-ary tuples, letting the programmer write code like:

```haskell
# constructing tuples of arbitrary arity
(e1, e2, e3, ..., en)
# allowing expressions to be used as fields
e1[e2]
```

Next, we'll see how to

- use the “pair” mechanism to add higher-order functions and
- reclaim unused memory via garbage collection.

Haskell vs Egg-eater

```haskell
data List = Node Int List         -- (Int, List)
          | Empty                 -- false

1:2:3:4:5:6:7:8:[]
(1,(2,(3,(4,(5,(6,(7,(8,false)))))))))

def isEmpty(l):
  l == False

def cons(h, t):
  (h, t)

def head(e):
  e[0]

def tail(e):
  e[1]
```

Haskell vs Egg-eater

```python
def length(l):
    if isEmpty(l):
        0
    else:
        1 + length(tail(l))
```
Haskell vs Egg-eater

```haskell
data Tree = Node Int Tree Tree    -- (Int, Tree, Tree)  
         | Leaf                   -- False

def node(n, l, r):
    return (n, l, r)
def isLeaf(t):
    t == False
def nodeVal(t):
    t[0]
def nodeLeft(t):
    t[1]
def nodeRight(t):
    t[2]
```