CSE 110A: Winter 2020

Fundamentals of Compiler
Design |

Functions
Owen Arden
UC Santa Cruz

Based on course materials developed by Ranjit Jhala

Functions

Next, we’ll build diamondback which adds support for
o User-Defined Functions

In the process of doing so, we will learn about
« Static Checking

« Calling Conventions
« Tail Recursion

Plan

1. Defining Functions
2. Checking Functions
3. Compiling Functions

4. Compiling Tail Calls

1. Defining Functions

First, let’s add functions to our language.
As always, let’s look at some examples.

Example: Increment

For example, a function that increments its input:

def
1

10

We have a function definition followed by a single “main” expression,
which is evaluated to yield the program’s result, which, in this case, is 11.

Example: Factorial

Here’s a somewhat more interesting example:

def
in

5

This program should produce the result

PO R NWA G

Example: Factorial

Suppose we modify the above to produce we should now get:
intermediate results:
def S
4
1 3
1 2
1
1]
in 1
1
2
5 6
24
120

120

Example: Mutual Recursion

For this language, the function definitions are global: any function can call any other
function. This lets us write mutually recursive functions like:

def

WNEs

Example: Mutual Recursion

For this language, the function definitions are global: any function can call any other
function. This lets us write mutually recursive functions like:

def

def

What should be the result of
executing this program?

WN PSS

Bindings

Lets create a special type that represents places where variables are bound,

data Bind a = Bind Id

A Bind is basically just an Id decorated with an a which will let us save
extra metadata like tags or source positions to help report errors

We will use Bind at two places:

1. Let-bindings,
2. Function parameters.

It will be helpful to have a function to extract the Id corresponding to a Bind

bindId :: Bind a —> Id
Bind =

Programs and Declarations

A program is a list of declarations and main expression.

data Program a = Prog
{ pDecls [Decl al —-- *~ function declarations
, pBody :: !(Expr a) - " "main" expression

Each function lives is its own declaration,

data Decl a =
{ fName -— " name
, fArgs -- ~ parameters
, fBody ~ body expression
, flabel :: a ~ metadata/tag

Expressions

Finally, lets add function application (calls) to the source expressions:

data Expr a

| Let (Bind a) (Expr a) (Expr a
| App Id Expr al

An application or call comprises

« an Id, the name of the function being called,
« a list of expressions corresponding to the parameters, and
« ametadata/tag value of type a.

(Note: that we are now using Bind instead of plain Id at a Let.)

Examples Revisited

Finally, lets add function application (calls) to the source expressions:

data Expr a
| Let (Bind a) (Expr a) (Expr a) a
| App 1d Expr al a

An application or call comprises

e an Id, the name of the function being called,
« a list of expressions corresponding to the parameters, and
« ametadata/tag value of type a.

(Note: that we are now using Bind instead of plain Id at a Let.)

Examples Revisited

Lets see how the examples above are represented:
ghci> parseFile "tests/input/incr.diamond"
Prog {pDecls = [Decl { fName = Bind "incr" ()

, fArgs = [Bind "n" ()1

, fBody = Prim2 Plus (Id “n* ()) (Number 1 ()) ()
, fLabel = ()}

1
, pBody = App "incr" [Number 5 ()1 ()
+
ghci> parseFile "tests/input/fac.diamond"
Prog { pbecls = [Decl {fName = Bind "fac" ()
, fArgs = [Bind "n" ()]
, fBody = Let (Bind "t" ()) (Priml Print (Id “n" ()) ())

(If (Prim2 Less (Id "n" ()) (Number 1 ()) ())
(Number 1 ())
(Prim2 Times (Id “n* ())
(App "fac" [Prim2 Minus (Id "n" ()) (Number 1 ()) O ())
0)0) O
, flabel = ()}

1
, pBody = App "fac" [Number 5 ()] ()
}

2. Static Checking

Next, we will look at an increasingly important aspect of compilation, pointing out
bugs in the code at compile time

Called Static Checking because we do this without (i.e. before) compiling and running
(“dynamicking”) the code.

There is a huge spectrum of checks possible:

+ Code Linting jslint, hlint

« Static Typing

« Static Analysis

+ Contract Checking

+ Dependent or Refinement Typing

Increasingly, this is the most important phase of a compiler, and modern compiler
engineering is built around making these checks lightning fast. For more, see this
interview of Anders Hejlsberg the architect of the C# and TypeScript compilers.

Static Well-formedness Checking

Suppose you tried to compile: Errors found!
tests/input/err-fac.diamond:6:13-14:
def fac(n): Unbound variable 'm'
let print(n) in
"1“ 1: 6| n % fac(m - 1)

tests/input/err-fac.diamond:8:1-9:
Function 'fact' is not defined

+ fac(3, 4) 8| fact(5) + fac(3, 4)

tests/input/err-fac.diamond: (8:11)-
(9:1): Wrong arity of arguments at
call of fac

We would like compilation to fail, not
silently, but with useful messages:

$ make tests/output/err-fac.result 8| fact(5) + fac(3, 4)

Static Well-formedness Checking

We get multiple errors:
1. The variable m is not defined,
2. The function fact is not defined,

3. The call fac has the wrong number of arguments.

Next, let's see how to update the architecture of our compiler
to support these and other kinds of errors.

Types

An error message type:

data UserError = Error
eMsg :: !Text
eSpan :: !SourceSpan
deriving (Show, Typeable

We make it an exception (that can be thrown):

instance Exception [UserError

Types

We can create errors with:

mkError :: Text —-> SourceSpan —> Error
= Error

We can throw errors with:

abort :: UserError —>

Types

We display errors with:

renderErrors :: [UserError] —> I0 Text

which takes something like:

Error

"Unbound variable 'm'"
= "tests/input/err-fac"

=1

©®

and produce a pretty message (that requires reading the source file),

tests/input/err-fac.diamond:6:13-14: Unbound variable 'm
6] n * fac(m - 1)

19

We can put it all together by

main :: I0

= ‘catch®
esHandle :: [UserError| -> I0
= >>= >>

Which runs the compiler and if any UserError are thrown, catch-es and renders the

result.
20

Transforms

Next, lets insert a checker phase into our pipeline:

Parse Check Norm. T: CodeGen
Text —3 BareP ——pBareP —— AnfP — AnfTagP ———p Asm

In the above, we have defined the types:

type BareP = Program SourceSpan -- ~ sub-expressions have src position metadata
type AnfP = Program SourceSpan -— ~ each function body in ANF
type AnfTagP = Program (SourceSpan, Tag) -- ~ each sub-expression has unique tag

21

Catching Multiple Errors

To make using a language and compiler pleasant, we should return as many errors as
possible in each run.

« Its rather irritating to get errors one-by-one.

We will implement this by writing the functions

wellFormed :: BareProgram —> [UserError

which will recursively walk over the entire program, declaration and expression and
return the list of all errors.

« If this list is empty, we just return the source unchanged,
« Otherwise, we throw the list of found errors (and exit.)

Thus, our check function looks like this:

check :: BareProgram —> BareProgram
check p = case wellFormed p of

1 ->p

25 => thro

22

Well-formed Programs

The bulk of the work is done by:

wellFormed :: BareProgram —> [UserError]
wellFormed (Prog ds e)
= duplicateFunError:
++ atMap (well
1FormedE fEnv

++ tyEnv e

where
Env = fromListEnv [(bindId f, length
| Decl f

This function,

. creates fEnv, a map from function-names to the function-arity (number of
params),

. computes the errors for each declaration (given functions in fEnv),

. concatenates the resulting lists of errors.

wN

23

Traversals

Lets look at how we might find three types of errors:

1. “unbound variables”
2. “undefined functions”

(In your assignment, you will look for many more.)

The helper function we L LFormedD creates an initial variable
environment vEnv containing the functions parameters, and uses that (and fEnv) to
walk over the body-expressions.

wellFormedD :: FunEnv —> BareDecl -> [UserError]
wellFormedD fEnv (Decl _ xs e _) = wellFormedE fEnv vEnv e
where

emptyEn

24

Traversals

The helper function we L LFormedE starts with the input vEnv@ (which has just) the
function parameters, and fEnv that has the defined functions, and traverses the
expression:

* At each definition Let x el e2, the variable x is added to the environment used
to check e2,

+ At each use Id x we check if x is in vEnv and if not, create a suitable UserError

« Ateachcall App f es we check if f isin fEnv and if not, create a
suitable UserError.

25
Traversals
wellFormedE :: FunEnv -> Env —> Bare —-> [UserError
where -
Boolean =
Number =
Id =
Priml =
Prim2 =
If =
Let =
++
App =
++
You should understand the above and be able to easily add extra
error checks.
26

Quiz

Which function(s) would we have to modify to add large number
errors (i.e. errors for numeric literals that may cause overflow)?

A.wellFormed :: BareProgram —> [UserError]
B.wellFormedD :: FunEnv —> BareDecl —> [UserError]
C.wellFormedE :: FunEnv —> Env —> Bare —> [UserError]
D.1and?2

E.2and 3

-

o

http://tiny.cc/cse110a-wellform-ind

27

Quiz

Which function(s) would we have to modify to add large number
errors (i.e. errors for numeric literals that may cause overflow)?

and
and

http://tiny.cc/cse110a-wellform-grp

28

Quiz

Which function(s) would we have to modify to add variable
shadowing errors?

and
and

[

e [m]

http://tiny.cc/cse110a-wellform2-ind

G

29

Quiz

Which function(s) would we have to modify to add variable
shadowing errors?

and
and

http://tiny.cc/cse110a-wellform2-grp

30

Quiz

Which function(s) would we have to modify to add duplicate
parameter errors ?

and
and

http://tiny.cc/cse110a-wellform3-ind

31

Quiz

Which function(s) would we have to modify to add duplicate
parameter errors ?

and
and

http:/tiny.cc/cse110a-wellform3-grp

32

Quiz

Which function(s) would we have to modify to add duplicate
function errors?

and
and

http://tiny.cc/cse110a-wellform4-ind

33

Quiz

Which function(s) would we have to modify to add duplicate
function errors?

A.wellFormed :: BareProgram —> [UserError]
B.wellFormedD :: FunEnv —> BareDecl —> [UserError]
C.wellFormedE :: FunEnv —> Env —> Bare —> [UserError]
D.1and?2

E.2and 3

http://tiny.cc/cse110a-wellform4-grp

34
Compiling Functions
Parse Check Norm. Ta: CodeGen
Text =4»BareP ——ppBareP -'-—‘)AnFP——iAnfTagP e ASIT
In the above, we have defined the types:
type BareP = Program SourceSpan —- " s
type AnfP = Program SourceSpan
type AnfTagP = Program (SourceSpan, Tag
35

Tagging

Parse Check Norm. Ta; CodeGen
Text ——3 BareP —— BareP ~—— AnfP— AnfTagP ——— Ast

The tag phase simply recursively tags each function body and the
main expression

36

ANF Conversion

Parse Check Norm. Ta; CodeGen
Text =—$»BareP —:E)BareP ety AN TP -—i AnfTagP = Asm

« The normalize phase (i.e. anf) is recursively applied to each
function body.

« In addition to Prim2 operands, each call’s arguments should be
transformed into an (Why?)

Generalize the strategy for binary operators from Boa

« from (2 arguments) to n-arguments.

37

Strategy

Parse Check Norm. Ta CodeGen
Text =g BareP —55) BareP = Aan»—-i AnfTagP = Asm

Now, let’s look at compiling function definitions and calls. We need a co-
ordinated strategy.

Definitions — Each definition is compiled into a labeled block
of Asm that implements the body of the definitions. (But what about
the parameters)?

Calls — Each call of f(args) will execute the block labeled f (But
what about the parameters)?

38

Strategy: The Stack

T—
0 B]
T
iy
e
Frame} Frame ﬂ\’*'“
o 25| [Rmca:
a1
a2
e a3
oo i Ty
| s s e Frame| [
Ttz Tz ot
e ey ey
e —

We will use our old friend, the stack to
« pass parameters
« have local variables for called functions

39

Calling Convention

Low Address — esp
Local #3 ebp - 12

Local#2 | ebp - 8

Current Local #1 | ebp - 4

Frame Saved EBP | 4— ebp

Return Addr.
Param#1_| ebp + 8
v Param 42| ebp + 12
. Param 43 | ebp + 16
High Address CEhL P

Recall that we are using the C calling convention that ensures
the above stack layout

40

Strategy: Definitions

When the function body starts executing, the parameters x1, x2,
.. xn are at [ebp + 4%2], [ebp + 4%3], ... [ebp + 4*(n+1)].

1. Ensure that enough stack space
is allocated i.e. that esp and ebp are properly managed

2. Compile body with initial Env mapping parameters to -2, -3,
= (N+1).

41

Strategy: Calls

As in Cobra, we must ensure that the parameters
actually live at the above address.

1. Before the call, push the parameter values onto the
stack in reverse order,

2. Call the appropriate function (using its label),

3. After the call, clear the stack by
incrementing esp appropriately.

NOTE:
At both definition and call, if you are compiling on MacOS, you need
to also respect the

42

Types

We already have most of the machinery needed to compile calls.

Lets just add a new kind of Label for each user-defined function:
data Label
| DefFun 1¢
We will also extend the Arg type to include information about size directives
data Arg
T é.ﬁed Size Arg

We will often need to specify that an Arg is a double word
(the other possibilities are - single word and byte) which we needn’t worry about.

data Sized
= DWordPtr

43

Implementation

Lets can refactor our compile functions into:
compileProg :: AnfTagP —> Asm
compileDecl :: AnfTagD —> Asm
compileExpr :: Env —> AnfTagE —> Asm

that respectively compile Program, Decl and Expr.

In order to simplify stack management as in Cobra lets have a helper
function that compiles the body of each function:

compileBody :: Env —> AnfTagE —> Asm

compileBody env e will wrap the Asm generated by compileExpr
env e with the code that manages esp and ebp.

Compiling Programs

To compile a Program we compile each Decl and the main
body expression

compileProg (Prog ds e)
= compileBody emptyEnv e
++ concatMap compileDecl ds

QUIZ: Does it matter whether we put the code for e before ds?
1. Yes
2. No

45

Compiling Programs

To compile a Program we compile each Decl and the main
body expression

compileProg (Prog ds e)
= compileBody emptyEnv e
++ concatMap compileDecl ds

QUIZ: Does it matter what order we compile the ds ?
1. Yes
2. No

46

Compiling Declarations

To compile a single Decl we

1. Create a block starting with a label for the function’s name
(so we know where to call),

2. Invoke compileBody to fill in the assembly code for the
body, using the initial Env obtained from the function’s
formal parameters.

compileDecl :: ADcl —> [Instruction]
compileDecl (Decl f xs e _

= IlLabel (DefFun (bindId f))

: compileBody (paramsEnv xs) e

47

Compiling Declarations

The initial Env is created by paramsEnv which returns
an Env mapping each parameter to its stack position

paramsEnv :: [Bind al —> Env
paramsEnv xs = fromListEnv (zip xids [-2, -3..])

where
xids = map bindId xs

(Recall that bindId extracts the Id from each Bind)

48

Compiling Declarations

Finally, as in cobra, compileBody env e wraps the assmbly
for e with the code that manages esp and ebp.

compileBody :: Env —> AnfTagE -> Asm
compileBody env e = entryCode e
++ compileExpr env e
++ exitCode e
++ [IRet]
entryCode :: AnfTagE -> Asm

entryCode = | IPush (Reg EBP)

, IMov (Reg EBP) (Reg ESP)
, ISub (Reg ESP)
where
r = countVars e
exitCode :: AnfTagE -> Asm

IMov (Reg ESP) (Reg EBP
, IPop (Reg EBP)

Const 4 % n)

49

Compiling Calls

Finally, lets extend code generation to account for calls:

compileExpr ::
compileExpr env (App f vs
= call (DefFun f)

[param env v | v <- vs]

Env —> AnfTagE —> [Instruction]

The function param converts an immediate
expressions (corresponding to function arguments)

param ::

Env —> ImmE —> Arg

param env v = Sized DWordPtr (immArg env v)

The Sized DWordPtr specifies that each argument will occupy
a double word (i.e. 4 bytes) on the stack.

50

EXERCISE

The hard work compiling calls is
done by:

call :: Label —> [Arg] —>
[Instruction]

Fill in the implementation

of call yourself. As an example
of its behavior, consider the
(source) program:

def add2(x, y):

X +y

add2(12, 7)

The call add2(12, 7) is
represented as:

App "add2" [Number 12, Number 7]
The code for the call is generated by

all (DefFun "add2") [arg 12, arg 7]
where arg converts source values
into assembly Arg which should
generate the equivalent of the
assembly:

push DWORD 14

push DWORD 24

call label_def_add2
add esp, 8

51

Compiling Tail Calls

Our language doesn’t have loops.
While recursion is more general, it is
more expensive because it uses up

But, the “equivalent” d d
stack space (and requires all the q Lamon

rogram
attendant management overhead). prog
For example (the python program):
def sumTo(n): def sumTo(n):
r==90 if (n <= 0):
i=r 0
e (0 <= 1): else:
r=r+i n + sumTo(n - 1)
i=1 1
return r sumTo(10000)
sumTo(10000)
« Requires a single stack frame « Requires 10000 stack frames ...
« Can be implemented with 2 « One for fac(10000), one
registers for fac(9999) etc.
52
Fortunately, we can do much better.
A tail recursive function is one where the recursive call is the last operation done by
the function, i.e. where the value returned by the function is the same as the value
returned by the recursive call.
We can rewrite sumTo using a tail-recursive Loop function:
def loop(r, i):
f (0 <= i):
et rr=r + i
,ii=di-1
in
oop(rr, ii) # tail call
lse
r
def sumTo(n):
loop(@, n)
sumTo(10000)
53

Visualizing Tail Calls

e Plain Recursion
I « Each call pushes a frame onto
sl the call-stack;
5 4 3+s

etz « The results are popped
5+ [4+ [3+ [2+ sumTo(1)]]] off and added to the parameter

o at that frame.

5 (4 3+ [2+[1+ 1To(0)111]

=>5+ [4+ [3+ [2+ [1+0]]]

== 5+ [4+ [3+ [2+1]]

== 54 [4+ (3 +3])

Visualizing Tail Calls

Tail Recursion
« Accumulation happens in the parameter
(not with the output),

o Each call returns its result without
further computation

No need to use call-stack, can make recursive
call in place. * Tail recursive calls can
be compiled into loops!

55

Tail Recursion Strategy

Instead of using call to make the call, simply:

1. Move the call’s arguments to the (same) stack position (as
current args),

2. Free current stack space by resetting esp and ebp (as just prior
to ret c.f. exitCode),

3. Jump to the start of the function.

That is, here’s what a naive implementation would look like:

ush ii
ush rr

push [ebp - 8]
push [ebp - 4]
call def_loop

#p
#p

56

Tail Recursion Strategy

but a tail-recursive call can instead be compiled as:

mov eax , [ebp 8] # overwrite i with ii

mov [ebp + 12], eax

mov eax, [ebp 4] # overwrite r with rr

mov [ebp + 8], eax

mov esp, ebp # "free" stack frame (as before "ret’)
pop ebp

jmp def_loop # jump to function start

which has the effect of executing loop literally as if it were a while-loop!

57

Requirements

To implement the above strategy, we need a way to:

1. Identify tail calls in the source Expr (AST),
2. Compile the tail calls following the above strategy.

58
We can do the above in a single step, i.e., we could identify the
tail calls during the code generation, but its cleaner to separate
the steps into:
Parse Check Norm. Tag Tails CodeGen
Text =—§p BareP == BareP =———fgp AnfP ~—§» AnfTagP =~=PpAnfTagTLP e Asm
In the above, we have defined the types:
type BareP = Program SourceSpan ~ sub-expressions have src position metadata
type AnfP = Program SourceSpan ~ each function body in ANF
type AnfTagP = Program (SourceSpan, Tag) —- ~ each sub-expression has unique tag
type AnfTagT1P = Program ((SourceSpan, Tag), Bool
— ~ each call is marked as "tail" or not
59

Transforms

Thus, to implement tail-call optimization, we need to
write two transforms:

1. To Label each call with True (if it is a tail call) or False
otherwise:

tails :: Program a —> Program Bool

2. To Compile tail calls, by extending compileExpr

60

Labeling Tail Calls

data Expr
def facTR(acc, n): = Number Integer
if (n< b | Boolean Bool
o | 1d d
else:)
if (n == 2): | Priml Priml Expr
2 * Not Tail | Prim2 Prim2 Expr Expr
else: | If Expr Expr Expr
facTR(acc * n, n - 1)} Tail | Let Bind Expr Expr
|

App Id [Expr]

The Expr in non tail positions

e Priml

¢ Prim2

¢ Let (“bound expression”)

* If (“condition”)
cannot contain tail calls; all those values have some further computation
performed on them.

61
Labeling Tail Calls
data Expr
def facTR(acc, n): = Number Integer
if (n<1): | Boolean Bool
ace | 1d 1d
else: .
if (n == 2): | Priml Priml Expr
2 * Not Tail | Prim2 Prim2 Expr Expr
else: | If Expr Expr Expr
I App Id [Expr]
However, the Expr in tail positions
e If (“then” and “else” branch)
e Let (“body”)
can contain tail calls (unless they appear under the first case)
62

Transforms

Algorithm: Traverse Expr using a Bool

« Initially True but
» Toggled to False under non-tail positions,
« Used as “tail-label” at each call.

NOTE: All non-calls get a default tail-label of False.

63

Transforms

tails :: Expr a —> Expr Bool
= True -- initially flag is True
where
False
Number Number
Boolean Boolean
Id = Id
Prim2 = Prim2
where
= False <$> —-- "prim-args" is non-tail
If = If
where
False "cond"
“then
else
Let Let
where
= False —— "bound-expr" is non-tail
= —— "body-expr" may be tail
App = App —-- tail-label is current flag
where
= False <$> —- "call args" are non-tail
64
Transforms
tails :: Expr a —> Expr Bool
= True —-- initially flag is True
where
False
Number Number
Boolean Boolean
Id Id
Prim2 = Prim2
where
EXERCISE: How could we modify tails is non-tail
If to only mark tail-recursive calls, i.e. to
where s B .
the same function (whose declaration is notail
being compiled?) e tail
= —= relse e tail
Let = Let
where
False —= "bound-expr" is no ail
—— “body-expr" may be tail
App = App —- tail-label is current flag
where
= False <$> —- "call args" are non-tail
65

Compiling Tail Calls

Finally, to generate code, we need only add a special case to compileExpr

compileExpr :: Env —> AnfTagTlE —> [Instruction
App
| = DefFun | v <=
| = DefFun | v <=

That is, if the call is not labeled as a tail call, generate code as before. Otherwise,
use tailcall which implements our

tailcall :: Label —> [Arg] —> [Instruction
= —— overwrite current param slots with call args

++ —- restore ebp and esp
++ [IJmp —— jump to start

EXERCISE: Does the above strategy work
always? Can you think of situations where
it may go horribly wrong?

66

