CSE 110A: Winter 2020

Fundamentals of Compiler
Design |

Data Representation

Owen Arden
UC Santa Cruz

Based on course materials developed by Ranjit Jhala

Data Representation

Next, lets add support for

o Multiple datatypes (number and boo'lean)
o Calling external functions

In the process of doing so, we will learn about

» Tagged Representations
» Calling Conventions

Plan

Our plan will be to (start with boa) and add the following
features:

* Representing boolean values (and numbers)
e Arithmetic Operations
¢ Arithmetic Comparisons

* Dynamic Checking (to ensure operators are well behaved)

1. Representation

Motivation: Why booleans?

In the year 2018, its a bit silly to use

. 0 for false and
o non-zero for true.

But really, boo Lean is a stepping stone to other data

¢ Pointers,
e Tuples,

e Structures,
¢ Closures.

The Key Issue

How to distinguish numbers from booleans?

¢ Need to store some extra information to mark values

as number or boo'l.

Option 1: Use Two Words

First word is 1 means bool,
is O means number, 2 means pointer etc.

Pros
¢ Can have lots of different types, but
Cons

¢ Takes up double memory,
¢ Operators +, — do fwo memory
reads [eax], [eax - 4].

In short, rather wasteful. Don’t need so
many types.

FALSE
TRUE

Representation (HEX)
0x000000000] [0x00000003]

0x000000000] [0x00000005]
0x000000000] [0x0000000C]
0x000000000] [0x0000002a]
0x000000001] [0x00000000]

[
[
[
[
[
[0x000000001] [0x00000001]

Option 2: Use a Tag Bit

Can distinguish two types with a single bit.

Least Significant Bit (LSB) is

¢ @ for number
* 1 for boolean

Why not 0 for boolean and 1 for number?

Tag Bit: Numbers

So number is the binary representation shifted left by 1 bit

* Lowest bit is always 0

* Remaining bits are number’s binary representation

For example,

Value Representation (Binary)

3 [0b..00000110]
5 [0b..00001010]
12 [0b..00011000]
42 [0b..01010100]

Value Representation (HEX)
3 [0x00000006]
5 [0x0000000a]
12 [0x00000018]

42 [0x00000054]

Tag Bit: Booleans

Most Significant Bit (MSB) is
° 1 for true
. 0 for false

For example

Value Representation (Binary)
TRUE [0b1000..0001]

FALSE [0b0000..0001]

Value Representation (HEX)
TRUE [0x80000001]
FALSE [0x00000001]

Types

Lets extend our source tprS

with boolean constants So, our examples become:
data Expr a
= e Value Representation (HEX)
| Boolean Bool a Boolean False HexConst 0x00000001
. Boolean True HexConst 0x80000001
Correspondingly, we extend our
. Number 3 HexConst 0x00000006
assembly Arg (values) with
Number 5 HexConst 0x0000000a
data Arg Number 12 HexConst 0x00000018
= Number 42 HexConst 0x0000002a

| HexConst Int

Transforms

Next, lets update our implementation

Parse Norm. Tag CodeGen
Text =4 Barek =4 AnfE ~———f ANfTAGE =P AsSm

The parse, anf and tag stages are straightforward.
Let’s focus on the compile function.

A TypeClass for Representing Constants

Its convenient to introduce a type class describing Haskell types that
can be represented as x86 arguments:

class Repr a where
repr :: a —> Arg

We can now define instances for Int and Bool as:

instance Repr Int where
repr n = Const (Data.Bits.shift n 1)
—— left-shift 'n’ by 1

instance Repr Bool where
repr False HexConst 0x00000001
repr True HexConst 0x80000001

Immediate Values to Arguments

Boolean b is an immediate value (like Number n).

Let’s extend immArg that transforms an immediate
expression to an x86 argument.

immArg :: Env —> ImmTag —> Arg
immArg (Var X _) = uas

immArg (Number n) = repr n
immArg (Boolean b) = repr b

Compiling Constants

Finally, we can easily update the compile function as:

compileEnv :: Env —-> AnfTagE -> Asm
compileEnv _ e@(Number _) = [IMov (Reg EAX) (immArg env e)]
compileEnv _ e@(Boolean _) = [IMov (Reg EAX) (immArg env e)]

(The other cases remain unchanged.)
Let’s run some tests to double check.

Output Representation

Say what?! Ah. Need to update our run-time printer in main.c

void print(int val){
if (val == CONST_TRUE)
printf("true");
else if (val == CONST_FALSE)
printf("false");
else // should be a number!
printf("%d", val >> 1); // shift right to remove tag bit.

Can you think of some other tests we should write?

2. Arithmetic Operations

Constants like 2, 29, false are only useful if we can perform
computations with them.

First let’s see what happens with our arithmetic operators.

Shifted Representation and Addition

We are representing a number n by shifting it left by 1.
n has the machine representation 2:*n

Thus, our source values have the following
representations:

Source Value Representation (DEC)
3 6

5 10

3+5=28 6 + 10 = 16

nl + n2 2%nl + 2*n2 = 2x(nl + n2)

That is, addition (and similarly, subtraction) works as is with the
shifted representation.

Shifted Representation and Multiplication

We are representing a number n by shifting it left by 1 n has the
machine representation 2+n

Thus, our source values have the following representations:

Source Value Representation (DEC)
3 6

5 10
3%x5=15 6 x 10 = 60
nl * n2 2%nl * 2%n2 = 4%(nl * n2)

Thus, multiplication ends up accumulating the factor of 2. The
result is two times the desired one.

Strategy

Thus, our strategy for compiling arithmetic operations
is simply:

« Addition and Subtraction “just work” as before, as
shifting “cancels out”,
« Multiplication result must be “adjusted” by
dividing-by-two
« i.e. right shifting by 1

Types

The source language does not change at all, for
the Asm lets add a “right shift” instruction (shr):

data Instruction

_| IShr Arg Arg

20

Transforms

We need only modify compileEnv to account for the
“fixing up”

compileEnv :: Env —> AnfTagE —> [Instruction
Prim2 =

where the helper compilePrim2 works
for Prim2 (binary) operators and immediate arguments:

21

Transforms

compilePrim2 :: Env —-> Prim2 —> ImmE —-> ImmE —> [Instruction
Plus = [IMov (Reg EAX
IAdd (Reg EAX

Minus = IMov (Reg EAX
ISub (Reg EAX

Times = IMov (Reg EAX
IMul (Reg EAX
IShr (Reg EAX) (Const 1

22

Tests

Let’s take it out for a drive.

What does "2 * (-1)" evaluate to?
2147483644

Whoa?!

Well, its easy to figure out if you look at the generated assembly:

mov eax, 4
imul eax, -2
shr eax, 1
ret

23

Tests

The trouble is that the negative result of the multiplication is
saved in twos-complement format, and when we shift that right by
one bit, we get the wierd value (does not “divide by two”)

Decimal Hexadecimal| Binary

-8 FFFFFFF8 0b11111111111111111111111111111000
2147483644 | 7FFFFFFC ~ 0b01111111111111111111111111111100

Solution: Signed/Arithmetic Shift
The instruction sar does what we want, namely:
« preserves the sign-bit when shifting

« i.e. doesn’t introduce a 0 by default

24

Transforms Revisited

Lets add sar to our target:

data Instruction

T ISar Arg Arg
and use it to fix the post-multiplication adjustment

e i.e.use ISar instead of IShr

compilePrim2 env Times v1 v2 = [IMov (Reg EAX) (immArg env v1)
, IMul (Reg EAX) (immArg env v2)
, ISar (Reg EAX) (Const 1)
1

After which all is well:

"2 % (1)
produces
-2
25
3. Arithmetic Comparisons
Next, lets try to implement comparisons:
Many ways to do this:
. branches jne, jl, jgor
. bit-twiddling.
26

Comparisons via Bit-Twiddling

Key idea: negative number’s most significant bit is 1
To implement argl < arg2, compute argl — arg2

« * When result is negative, MSB is 1, ensure eax set to 0x80000001
« * When result is non-negative, MSB is 0, ensure eax set
to 0x00000001
« Can extract msb by bitwise and with 0x80000000.
« Can set tag bit by bitwise or with 0x00000001

So compilation strategy is:

mov eax, argl

sub eax, arg2

and eax, 0x80000000 ; mask out "sign" bit (msb)
or eax, 0x00000001 ; set tag bit to bool

27

Comparisons: Implementation

Lets go and extend:

e The Instruction type

data Instruction

| IAnd Arg Arg
| I0r Arg Arg

e The instrAsm converter
instrAsm :: Instruction —> Text
instrAsm (IAnd al a2) = ...
instrAsm (IOr al a2) = ..

e The actual compilePrim2 function

28

Exercise: Comparisons via Bit-Twiddling

« Can compute argl > arg2 by computing arg2 < argl.

« Can compute argl != arg2 by computing argl < arg2 ||
arg2 < argl

« Can compute argl = arg2 by computing ! (argl != arg2)

For the above, can you figure out how to implement:

« Boolean ! ?
« Boolean || ?
« Boolean && ?

You may find these instructions useful

29

4. Dynamic Checking

We’ve added support for Number and Boolean but we have no
way to ensure that we don’t write gibberish programs like:

2 + true
or
7 < false

In fact, lets try to see what happens with our code on the
above:

ghci> exec "2 + true"

Oops.

30

Checking Tags at Run-Time

Later, we will look into adding a static type system. For now, let’s
see how to abort execution when the wrong types of operands are
found when the code is executing.

Operation Op-1 Op-2

+ int int
= int int
* int int
< int int
> int int

&& bool bool
|l bool bool
! bool

if bool

= intorbool intorbool

31

Strategy

Let's check that the data in eax is an int:
« Suffices to check that the LSB is 0
« If not, jump to special error_non_int label

For example, to check if arg is a Number

mov eax, arg

mov ebx, eax ; copy into ebx register
and ebx, 0x00000001 ; extract lsb
cmp ebx, 0 ; check if lsb equals @

jne error_non_number

at error_non_number we can call into a C function:

error_non_number:

push eax ; pass erroneous value
push @ ; pass error code
call error ; call run-time "error" function

32

Strategy

Finally, the error function is part of the run-time and looks like:

void error(int code, int v){

if (code == 0) {
fprintf(stderr, "Error: expected a number but got %#010x\n", v);
1
}
else if (code == 1) {

// print out message for errorcode 1 ...
.

¥
else if (code == 2) {
// print out message for errorcode 2 ...

N
|

exit(1);

33

Strategy By Example

Lets implement the above in a simple file tests/output/int-check.s

section . text
extern error
extern print
global our_: e_starts_here
our_code_starts_here:
mov eax, 1 ; not a valid number

mov ebx, eax copy into ebx register

and ebx, 0x00000001 ; extract lsb

cmp ebx, 0 check if lsb equals @

jne error_non_numbe
error_non_number:

push eax

push 0

call error

make tests/output/int-check.result
. segmentation faul

What happened ?

Managing the Call Stack

To properly call into C functions (like error), we must play by the rules of the C calling convention

D ¢ esp.

Frame. Frame
2

—esp

Frame|
5

Frame|

Frame
5 £

e e

1. The local variables of an (executing) function are saved in its stack frame.
2. The start of the stack frame is saved in register ebp,
3. The start of the next frame is saved in register esp.

35

Calling Convention

We must preserve the above invariants as follows:

In the Callee:

At the start of the function

push ebp ; save (previous, caller's) ebp on stack
mov ebp, esp ; make current esp the new ebp
sub esp, 4+ ; "allocate space" for N local variables

At the end of the function

mov esp, ebp ; restore value of esp to that just before call

; now, value at [esp] is caller's (saved) ebp
pop ebp ; so: restore caller's ebp from stack [esp]
ret ; return to caller

36

Calling Convention

We must preserve the above invariants as follows:

In the Caller:

To call a function target that takes N parameters:

; push last arg first ...

; then the second ...

; finally the first

; make the call (which puts return addr on stack)

; now we are back: “clear" args by adding 4xnumArgs

NOTE: If you are compiling on MacOS, you must respect the 16-Byte Stack Alignment
Invariant

37

Fixed Strategy By Example
Lets implement the above in a simple file tests/output/int-check.s
section t
extern crror
extern print
global our_code_starts_here
our_code_starts_here:

push ebp

mov ebp, esp

sub esp, 0 ; 0 local variables here

mov eax, 1 ; not a valid number

mov ebx, eax ; copy into ebx register

and ebx, 0x00000001 i extract lsb

cmp ebx, 0 ; check if lsb equals 0

jne error_non_number

mov esp, ebp

pop ebp

ret
error_non_number: Aha, now the code works!

push eax make tests/output/int-che

push 0

call erro ... expected number but got .

Q: What NEW thing does our compiler need to compute?
Hint: Why do we sub esp, 0 above?
38

Types

Let’s implement the above strategy.

To do so, we need a new data type for run-time types:

data Ty = TNumber | TBoolean
anew Label for the error

data Label
| TypeError Ty —— Type Error Labels
| Builtin Text —-— Functions implemented in C

and thats it.

39

Transforms

The compiler must generate code to:
» Perform dynamic type checks,

 Exit by calling error if a failure occurs,
» Manage the stack per the convention above.

40

1. Type Assertions

The key step in the implementation is to write a function

assertType :: Env —> IExp —> Ty —> [Instruction]
assertType env v ty

= [IMov (Reg EAX) (immArg env v)
, IMov (Reg EBX) (Reg EAX)
, IAnd (Reg EBX) (HexConst 0x00000001)
, ICmp (Reg EBX) (typeTag ty)
, IJne (TypeError ty)

1
where typeTag is:

typeTag :: Ty —>
typeTag TNumber
typeTag TBoolean

rg
HexConst 0x00000000
HexConst 0x00000001

nn x>

41

1. Type Assertions

You can now splice assertType prior to doing the actual computations,
e.g.

compilePrim2 :: Env —> Prim2 -> ImmE —> ImmE —> [Instruction]
compilePrim2 env Plus v1 v2 = assertType env vl TNumber
++ assertType env v2 TNumber
++ [IMov (Reg EAX) (immArg env vi)
, IAdd (Reg EAX) (immArg env v2)

42

2. Errors

We must also add code at the TypeError TNumber and TypeError
TBoolean labels.

errorHandler :: Ty —-> Asm

errorHandler t =

—— the expected-number error

ILabel (TypeError t)

—— push the second "value" param first,
IPush (Reg EAX)

—— then the first "“code" param,
IPush (ecode t)

-- call the run-time's "error" function.

, ICall (Builtin "error")

1

ecode :: Ty —> Arg
ecode TNumber = Const 0

ecode TBoolean = Const 1 43
3. Stack Management
Local Variables
First, note that the local variables live at offsets from ebp, so lets
update
immArg :: Env —> ImmTag —> Arg
immArg _ (Number n _) = Const n
immArg env (Var x _) = RegOffset EBP 1
where
i = fromMaybe err (lookup x env)
err = error (printf "Error: Variable '%ss' is unbound" x)
44

3. Stack Management

Maintaining esp and ebp
We need to make sure that all our code respects the C calling convention..

To do so, just wrap the generated code, with instructions to save and
restore ebp and esp

compileBody ::
compileBody e

AnfTagE -> Asm
ntryCode e

mptyEnv e

++ ex
entryCode :: AnfTagE -> Asm
entryCode e = [IPush (Reg EBP)

, IMov (Reg EBP) (Reg ESP)
, ISub (Reg ESP) (Const 4 * n)

where
n = countV

s e

exitCode :: AnfTagE —> Asm

exitCode = [IMove (Reg ESP) (Reg EBP)
, IPop (Reg EBP)
IRet

45

3. Stack Management

Q: But how shall we compute countVars?

Here’s a shady kludge:

countVars :: AnfTagE -> Int
countVars = 100

Obviously a sleazy hack (why?), but let’s use it to test everything else;
then we can fix it.

46

4. Computing the Size of the Stack

Once everything (else) seems to work, let's work out:

countVars :: AnfTagE —> Int

Finding the exact answer is undecidable in general,
i.e. is impossible to compute.

However, it is easy to find an over-approximate heuristic, i.e.
« avalue guaranteed to be larger than the than the max size,

« and which is reasonable in practice.

47

Strategy

Let countVars e be:
« The maximum number of let-binds in scope at any point inside ¢, i.e.
« The maximum size of the Env when compiling e

Lets work it out on a case-by-case basis:
« Immediate values like Number or Var
« are compiled without pushing anything onto the Env
e j.e.countVars=0
« Binary Operations like Prim2 o v1 v2 take immediate values,
« are compiled without pushing anything onto the Env
e i.e. countVars =0
« Branches like If v el e2 can go either way
o can’t tell at compile-time
« i.e. worst-case is larger of countVars el and countVars e2
o Let-bindings like Let x el e2 require
« evaluating e1 and
« pushing the result onto the stack and then evaluating 2
« i.e. larger of countVars eland 1 + countVars e2

48

Implementation

We can implement the above a simple recursive function:

countVars :: AnfTagE —> Int
If =
Let =

0

49

Naive Heuristic is Naive

The above method is quite simplistic. For example, consider the
expression:

let

N

in

countVars would tell us that we need to allocate 3 stack spaces
but clearly none of the variables are actually used.

Will revisit this problem later, when looking at optimizations.

50

Recap

We just saw how to add support for

* Multiple datatypes (number and boolean)
« Calling external functions

and in doing so, learned about

« Tagged Representations
« Calling Conventions

To get some practice, in your assignment, you will add:

« Dynamic Checks for Arithmetic Overflows (see
the jo and jno operations)

« APrimitive print operation implemented by a function in the c run-
time.

And next, we’ll see how to easily add user-defined functions.

51

Questions?

52

