CSE 110A: Winter 2020

Fundamentals of Compiler
Design |

Datatypes and
Higher-order functions

Owen Arden
UC Santa Cruz

Based on course materials developed by Nadia Polikarpova

Representing complex data

« We’ve seen:
- base types: Bool, Int, Integer, Float

- some ways to build up types: given types T1, T2
« functions: T1 -> T2
o tuples: (T1, T2)
o lists: [T1]
« Algebraic Data Types: a single, powerful technique
for building up types to represent complex data
- lets you define your own data types
- subsumes tuples and lists!

Product types

« Tuples can do the job but there are two problems...
deadlineDate :: (Int, Int, Int)

deadlineDate = (2, 4, 2019)

deadlineTime :: (Int, Int, Int)
deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day
extension :: (Int, Int, Int) -> (Int, Int, Int)
extension = ...

« Can you spot them?

1. Verbose and unreadable

type Date = (Int, Int, Int)

type Time = (Int, Int, Int) A type synonym for T: a

name that can be used

deadlinebate :: Date interchangeably with T

deadlineDate = (2, 4, 2019)

deadlineTime :: Time
deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day

extension :: Date -> Date
extension = ...

2. Unsafe

» We want this to fail at compile time!!!
extension deadlineTime

» Solution: construct two different datatypes
data Date = Date Int Int Int
data Time = Time Int Int Int
-- constructor” “parameter types

deadlineDate :: Date
deadlineDate = Date 2 4 2019

deadlineTime :: Time
deadlineTime = Time 11 59 59

Record Syntax

« Haskell’s record syntax allows you to name the
constructor parameters:

« Instead of
data Date = Date Int Int Int

« You can write:

data Date = Date { Use the field name as a
month :: Int, function to access part
day :: Int, of the data
year :: Int

}
deadlineDate = Date I ' 2019

deadlineMonth = month deadlineDate

Building data types

» Three key ways to build complex types/values:
1. Product types (each-of): a value of T contains a
value of T1 and a value of T2 [done]
2. Sum types (one-of): a value of T contains a value
of T1 or a value of T2

3. Recursive types: a value of T contains a sub-
value of the same type Ts

Example: NanoMD

» Suppose | want to represent a text document with
simple markup. Each paragraph is either:
- plain text (string)
- heading: level and text (int and string)
- list: ordered? and items (Bool and [string])

« | want to store all paragraphs in a list
doc = [(1, "Notes from 130") -- Lvl 1 heading
, "There are two types of languages:" -- Plain text
, (True, ["purely functional”, "purely evil"])
--"" Ordered Llist
] -- But this doesn't type check!!!

Sum Types

« Solution: construct a new type for paragraphs that is
a sum (one-of) the three options!
- plain text (string)
- heading: level and text (int and string)
- list: ordered? and items (Bool and [String])

« | want to store all paragraphs in a list
data Paragraph =
Text String -- 3 constructors,

| Heading Int String -- each with different
| List Bool [String] -- parameters

QUIZ

What would GHCi say? *

data Paragraph =

Text String | Heading Int String | List Bool [String]
What would GHCi say to
>:t Text "Hey there!"

O A. syntax error
O B. Type error
(O c.Paragraph
O D. [Paragraph]

O E. [String]

Constructing datatypes

data T =
Cl T11 .. Tik
| c2 121 .. T21
| ..
| Ch Tnl .. Tnm
T is the new datatype

C1 .. Cnare the constructors of T
A value of type T is

o either C1 vl .. vkwithvi :: T1i
« orC2 vl .. vlwithvi :: T2i

. or..
« orCn vl .. vmwithvi :: Tni

Constructing datatypes

You can think of a T value as a box:

« either a box labeled C1 with values of types T11 .. T1k inside
« or abox labeled C2 with values of types T21 .. T21 inside

e or..

« or abox labeled Cn with values of types Tn1 .. Tnm inside

Apply a constructor = pack some values into a box (and label it)

e Text "Hey there!™

o put "Hey there!" in a box labeled Text
e Heading 1 "Introduction”

. put1land "Introduction" inabox labeled Heading
« Boxes have different labels but same type (Paragraph)

Example: NanoMD

data Paragraph =
Text String | Heading Int String | List Bool [String]
Now | can create a document like so:
doc :: [Paragraph]
doc = [
Heading 1 "Notes from 130"
, Text "There are two types of languages:"

, List True ["purely functional", "purely evil"]

1

Example: NanoMD

Now | want convert documents in to HTML.
| need to write a function:

html :: Paragraph -> String
html p = ??? -- depends on the kind of
paragraph!

How to tell what’s in the box?

o Look at the label!

Pattern Matching

Pattern matching = looking at the label and extracting values
from the box

« we’ve seen it before
« but now for arbitrary datatypes

html :: Paragraph -> String
html (Text str) = ...
-- It's a plain text! Get string
html (Heading 1vl str) = ...
-- It's a heading! Get level and string
html (List ord items) = ...
-- It's a list! Get ordered and items

Dangers of pattern matching (1)

html :: Paragraph -> String
html (Text str) = ...
html (List ord items) = ...

What would GHCi say to:
html (Heading 1 "Introduction")

Answer: Runtime error (no matching pattern)

Dangers of pattern matching (1)

Beware of missing and overlapped patterns
« GHC warns you about overlapped patterns

« GHC warns you about missing patterns when called
with -W (use :set -W in GHCi)

Pattern matching expression

We’ve seen: pattern matching in equations

You can also pattern-match inside your program using
the case expression:

html :: Paragraph -> String
html p =
case p of
Text str -> unlines [open "p", str, close "p"]
Heading 1lvl str -> ...
List ord items -> ...

QUIZ

What is the type of *

let p = Text "Hey there!"
in case p of
Text str -> str
Heading 1vl _ -> 1vl
List ord _ -> ord

O A. syntax error
O B. Type error
O c.string

O D. Paragraph

O E. Paragraph -> String

Pattern matching expression: typing

The case expression

case e of
patternl -> el
pattern2 -> e2

patternN -> eN
has type T if

« each el...eN has type T
« e has some type D
« each patternl..patternN is a valid pattern for D
> i.e. avariable or a constructor of D applied to other patterns
The expression e is called the match scrutinee

20

Building data types

« Three key ways to build complex types/values:
1. Product types (each-of): a value of T contains a
value of T1 and a value of T2 [done]

2. Sum types (one-of): a value of T contains a value
of T1 or a value of T2 [done]

3. Recursive types: a value of T contains a sub-
value of the same type Ts

21

Recursive types

Let’s define natural numbers from scratch:
data Nat = ???

22

Recursive types

data Nat = Zero | Succ Nat
A Nat value is:

« either an empty box labeled zZero
« or a box labeled Succ with another Nat in it!

Some Nat values:

Zero -- 0
Succ Zero -- 1
Succ (Succ Zero) -- 2
Succ (Succ (Succ Zero)) -- 3

23

Functions on recursive types

Principle: Recursive code mirrors recursive data

24

1. Recursive type as a parameter

data Nat = Zero -- base constructor
| Succ Nat -- inductive constructor

Step 1: add a pattern per constructor

toInt :: Nat -> Int
toInt Zero = ... -- base case
toInt (Succ n) = ... -- inductive case
-- (recursive call goes here)

25

1. Recursive type as a parameter

Zero -- base constructor

data Nat =
| Succ Nat -- inductive constructor

Step 2: fill in base case

toInt :: Nat -> Int
toInt Zero =0 -- base case
toInt (Succ n) = ... -- inductive case
-- (recursive call goes here)

26

1. Recursive type as a parameter

Zero -- base constructor

data Nat =
| Succ Nat -- inductive constructor

Step 3: fill in inductive case using a recursive call:

toInt :: Nat -> Int
toInt Zero =0 -- base case
toInt (Succ n) = 1 + toInt n -- inductive case

27

QuUIZ

What does this evaluate to? *

let foo i = if i <= 0 then Zero else Succ (foo (i - 1))
in foo 2

O A. Syntax error
O B.Typeerror
O c2

O D. Succ Zero

O E. succ (Succ Zero)

28

2. Recursive type as a result

data Nat Zero -- base constructor

| Succ Nat -- inductive constructor

fromInt :: Int -> Nat

fromInt n
| n<=90 = Zero -- base case
| otherwise = Succ (fromInt (n - 1)) -- inductive

-- case

29

2. Putting the two together

Zero -- base constructor

data Nat =
| Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat
add Zero m=m -- base case
add (Succ n) m = Succ (add n m) -- inductive case

sub :: Nat -> Nat -> Nat

sub n Zero =n -- base case 1
sub Zero _ = Zero -- base case 2
sub (Succ n) (Succ m) = sub n m -- inductive case

30

2. Putting the two together

Lessons learned:

» Recursive code mirrors recursive data

add | ¢ With multiple arguments of a recursive type,
add which one should | recurse on?

» The name of the game is to pick the

sub right inductive strategy!

sub Z _ S
sub (n) (m) = sub nm

31

Lists

Lists aren’t built-in! They are an algebraic data type like any other:

data List Nil -- base constructor

| Cons Int List -- inductive constructor
e List [1, 2, 3] isrepresented as Cons 1 (Cons 2 (Cons 3 Nil))
« Built-in list constructors [] and (:) are just fancy syntax
for Nil and Cons
Functions on lists follow the same general strategy:
length :: List -> Int

length Nil =0 -- base case
length (Cons _ xs) = 1 + length xs -- inductive case

32

Lists

What is the right inductive strategy for appending two lists?

append :: List -> List -> List
append ??? ??? = ???

33

Lists

What is the right inductive strategy for appending two lists?
append :: List -> List -> List

append Nil ys = ys

append ??? ??? = ???

34

Lists

What is the right inductive strategy for appending two lists?
append :: List -> List -> List

append Nil ys = ys

append (Cons x xs) ys = Cons X (append xs ys)

35

Recursion is...

Building solutions for big problems from solutions
for sub-problems

* Base case: what is the simplest version of this
problem and how do | solve it?

Inductive strategy: how do | break down this
problem into sub-problems?

Inductive case: how do | solve the problem given the
solutions for subproblems?

« But it can get kinda repetitive!

36

Example: evens

Let’s write a function evens:

-- evens [] ==>[]

-- evens [1,2,3,4] ==> [2,4]
evens :r [Int] -> [Int]
evens [] = ...

evens (X:Xs) = ...

37

Example: four-letter words

Let’s write a function fourChars:

-- fourChars [] ==> []

-- fourChars ["i","must","do", "work"] ==> ["must", "work"]
fourChars :: [String] -> [String]

fourcChars [] = ...

fourChars (x:xs) = ...

38

Yikes, Most Code is the Same!

foo [] =[]
foo (x:xs)
| xmod 2 == 8 = x : foo xs
| otherwise = foo xs
foo [] =[]
foo (x:xs)
| length x == 4 = x : foo xs
| otherwise = foo xs

Only difference is condition
* x mod 2 == Ovslength x == 4

39

Moral of the day

D.R.Y. Don’t Repeat Yourself!

Can we

« reuse the general pattern and
« substitute in the custom condition?

40

HOFs to the rescue!

General Pattern

« expressed as a higher-order function
« takes customizable operations as arguments

Specific Operation
« passed in as an argument to the HOF

41

The “filter” pattern

fourChars [] =1

fourChars (x:xs)
| length x == 4 = x : fourChars xs
| otherwise = fourChars xs

evens [] =1
evens (x:xs)

| x "mod” 2 == 0 =x : evens xs

| otherwise = evens xs
filter f [] =0
filter f (xixs)
| fx =x 1 filter f xs
| otherwise = filter f xs

Use the filter pattern
to avoid duplicating code!

42

The “filter” pattern

General Pattern

« HOF filter

« Recursively traverse list and pick out elements that satisfy a predicate

Specific Operation

« Predicates isEven and isFour

filter f [1] =10
filter f (x:ixs)
| fx = x : filter f xs
| otherwise = filter f xs
evens = filter isEven fourChars = filter isFour
where where
isEven x = x ‘mod’ 2 == 0 isFour x = length x == 4
43
’
Let’s talk about types
-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens xs = filter isEven xs
where
isEven :: Int -> Bool
isEven x = x ‘mod’ 2 == 0
filter :: ???
44

Let’s talk about types

-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens xs = filter isEven xs

where
isEven :: Int -> Bool
isEven x = x ‘mod’ 2 ==
filter :: ???

45

Let’s talk about types

-- fourChars ["i","must"”, "do", "workR"] ==> ["must"”, "work"]
fourChars :: [String] -> [String]
fourChars xs = filter isFour xs

where
isFour :: String -> Bool
isFour x = 1length x ==
filter :: ???

46

Let’s talk about types

Uh oh! So what’s the type of filter?
filter :: (Int -> Bool) -> [Int] -> [Int] -- 227
filter :: (String -> Bool) -> [String] -> [String] -- 227
« It does not care what the list elements are
o as long as the predicate can handle them
« It’s type is polymorphic (generic) in the type of list elements

-- For any type "a’

-- if you give me a predicate on "a’s
-- and a list of "a’s,

-- I'LL give you back a list of "a’s
filter :: (a -> Bool) -> [a] -> [a]

47

Example: all caps

Lets write a function shout:

-- shout [] ==>[]

-- shout ['h',"e’,"L',"'L",'0"'] ==> ['H','E',"'L','L","0"]
shout :: [Char] -> [Char]

shout [] = ...

shout (x:xs) = ...

48

Example: squares

Lets write a function squares:

-- squares [] ==>[]

-- squares [1,2,3,4] ==> [1,4,9,16]
squares :: [Int] -> [Int]

squares [] = ...

squares (Xx:xs) = ...

49

Yikes, Most Code is the Same!

Lets rename the functions to foo:

-- shout

foo [] =[]

foo (x:xs) = toUpper x : foo xs

-- squares
foo [] =[]
foo (x:xs) = (x * x) : foo xs

Lets refactor into the common pattern

pattern = ...

50

The “map” pattern

shout [] (1

shout (x:xs)

squares []
squares (x:xs)

[l
‘toUpper x : shout xs ‘

(x*x) : squares Xxs

(1

f x : map f xs

map f []
map f (x:xs)

The map Pattern
General Pattern

« HOF map
« Apply a transformation f to each element of a list

Specific Operations

 Transformations toUpper and \x -> X * x

51

The “map” pattern

map f [] =[]
map f (x:xs) = f x : map f xs
Lets refactor shout and squares

shout =map ...

squares = map ...

map f [] =1
map f (x:xs) = f x : map f xs

shout = map (\x -> toUpper x) ‘ ‘ squares = map (\x -> x*x)

52
QUIZ
What is the type of map? *
map f [] =[]
map f (x:xs) = f x : map f xs
(A) (Char -> Char) -> [Char] -> [Char]
(B) (Int -> Int) -> [Int] -> [Int]
(©) (a -> a) -> [a] -> [a]
(D) (a -> b) -> [a] -> [b]
(E) (a -> b) -> [c] -> [d]
53

The “map” pattern

-- For any types “a’ and "b"

-- if you give me a transformation from “a~ to “b"
-- and a Llist of "a’s,

-- I'LL give you back a list of "b's

map :: (a -> b) -> [a] -> [b]

Type says it all!

« The only meaningful thing a function of this type can do is apply its first
argument to elements of the list (Hoogle it!)

Things to try at home:

« canyou write a functionmap' :: (a -> b) -> [a] -> [b] whose
behavior is different from map?

« canyou write a functionmap' :: (a -> b) -> [a] -> [b]such
thatmap' f Xs returns a list whose elements are not inmap f xs?

Don’t Repeat Yourself

Benefits of factoring code with HOFs:
« Reuse iteration pattern

o think in terms of standard patterns

o less to write
o easier to communicate

« Avoid bugs due to repetition

55

Recall: length of a list

-- len [] ==> 0
-- len ["carne", "asada"] ==> 2
len :: [a] -> Int

len [] =0

len (x:xs) = 1 + len xs

56

Recall: summing a list

-- sum [] ==> 0

- sum [1,2,3] ==> 6
sum :: [Int] -> Int

sum [] =0

sum (X:XS) = X + sum Xs

57

Example: string concatenation

Let’s write a function cat:

-- cat [] ==>""

-- cat ["carne", "asada", "torta"] ==> "carneasadatorta"
cat :: [String] -> String

cat [] = ...

cat (x:xs) = ...

58
Can you spot the pattern?
-- len
foo [] =0
foo (x:xs) = 1 + foo xs
== sum
foo [] =0
foo (x:xs) = x + foo xs
-- cat
foo [] ="
foo (x:xs) = x ++ foo xs
pattern = ...
59

The “fold-right” pattern

len [1 =0 sum [] =0 cat [] =

len (x:ixs) = 1 + len xs || sum (x:xs) = x + sum xs || cat (x:xs) = x ++ sum xs
foldr f b [] =b
foldr f b (x:xs) = f x (foldr f b xs)

The foldr Pattern

General Pattern

» Recurse on tail
» Combine result with the head using some binary operation

60

The “fold-right” pattern

foldr f b [] =b
foldr f b (x:xs) = f x (foldr f b xs)

Let’s refactor sum, len and cat:

sum = foldr ...
cat = foldr ...

len = foldr ...

Factor the recursion out!

61

The “fold-right” pattern

foldr f b []
foldr f b (x:xs) =

b

-4

x (foldr f b xs)

‘len:foldr (\x n =>1+n) 0 |

‘sum = foldr (\x n => x + n) 0 |

‘cat = foldr (\x s —> x ++ n) “” |

You can write it more clearly as
sum = foldr (+) ©
cat = foldr (++) ""

62

The “fold-right” pattern

foldr f b [] b
foldr f b (x:xs) = f x (foldr f b xs)

[len = foldr (\x n => 1 + n) 0 |

lsum = foldr (\x n => x + n) 0 |

‘cat = foldr (\x s —=> x ++ n) “” |

You can write it more clearly as
sum = foldr (+) ©
cat = foldr (++) ""

63

QUIZ

What does this evaluate to? *

foldr
foldr

fbl
f b (x:xs)

b
f x (foldr f b xs)

quiz = foldr (:) [] [1,2,3]

O (A) Type error

O ®n23

O ©B21

O @120

O ® 281

The “fold-right” pattern

foldr
foldr

foldr
==>

>

oo
oo
v v

fb[] =b

f b (x:xs) = f x (foldr f b xs)

(:) [1[1,2,3]

(:) 1 (foldr (:) [] [2, 3])

(:) 1 ((:) 2 (foldr (:) [1 [31))

() 1 ((:) 2 ((:) 3 (foldr (:) [1[D)))
(:) 1 () 2 () 3[D)

1 (2: [N

[1,2,3]

65

The “fold-right” pattern

foldr

|
oo
vV VYV VYV

f b [x1, x2, x3, x4]

f x1 (foldr f b [x2, x3, x4])

f x1 (f x2 (foldr f b [x3, x4]))

f x1 (f x2 (f x3 (foldr f b [x4])))

fx1 (f x2 (f x3 (f x4 (foldr f b [1))))
f x1 (f x2 (f x3 (f x4 b)))

Accumulate the values from the right

For example:

foldr
==>

(+) @ [1, 2, 3, 4]

1+ (foldr (+) 1 [2, 3, 4])

1+ (2 + (foldr (+) @ [3, 41))

1+ (2 + (3 + (foldr (+) @ [4])))

1+ (2+ 3+ (4+ (foldr (+) @ [IN)N
1+ 2+ @B+ ((4+09))

66

Tail recursion

Recursive call is the top-most sub-expression in the
function body

« i.e. no computations allowed on recursively returned
value

« i.e. value returned by the recursive call == value
returned by function

67

The “fold-right” pattern

Is foldr tail recursive?

Answer: No! It calls the binary operations on the results of the recursive call

68

What about tail-recursive versions?

Let’s write tail-recursive sum!

sumTR :: [Int] -> Int

sumTR = ...

69

What about tail-recursive versions?

Let’s write tail-recursive sum!

sumTR :: [Int] -> Int
sumTR xs = helper 0 xs
where
helper acc []
helper acc (x:xs)

acc
helper (acc + Xx) xs

70

What about tail-recursive versions?

Lets run sumTR to see how it works

sumTR [1,2,3]
==> helper 0 [1,2,3]

==> helper 1 [2,3] -0 +1==>1
==> helper 3 [3] -- 1+ 2==>3
==> helper 6 [1] --3+3==>6
==> 6

Note: helper directly returns the result of recursive call!

7

What about tail-recursive versions?

Let’s write tail-recursive cat!
catTR :: [String] -> String
catTR = ...

72

What about tail-recursive versions?

Let’s write tail-recursive cat!

catTR :: [String] -> String

wn

catTR xs = helper XS
where
helper acc [] = acc

helper acc (x:xs) = helper (acc ++ Xx) Xs

73
What about tail-recursive versions?
Lets run catTR to see how it works
catTR ["carne", "asada", "torta"]

==> helper "" ["carne", "asada", "torta"]

==> helper "carne" ["asada", "torta"]

==> helper "carneasada" ["torta"]

==> helper "carneasadatorta" [1]

==> "carneasadatorta”
Note: helper directly returns the result of recursive call!

74

Can you spot the pattern?

-- sumTR
foo xs = helper 0 xs
where
helper acc []
helper acc (x:xs) = helper (acc + X) xs

acc

-- catTR
foo xs = helper "" xs
where
helper acc [] acc
helper acc (x:xs) = helper (acc ++ Xx) Xs

pattern = ...

75

The “fold-left” pattern

sun xs = helper 0 xs cat xs = helper “" xs
where where
hetper acc [1 = acc hetper acc [1 = acc
helper acc (x:xs) = helper (acc + x) xs helper acc (x:xs) = helper (acc ++ x) xs
foldl f b xs = helper b xs
where

helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

The foldl Pattern
General Pattern

« Use a helper function with an extra accumulator argument

« To compute new accumulator, combine current accumulator
with the head using some binary operation

76
{3 »
The “fold-left” pattern
foldl f b xs = helper b xs
where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs
Let’s refactor sumTR and catTR:
sumTR = foldl
catTR = foldl
Factor the tail-recursion out!
77

QUIZ

What does this evaluate to? *

foldl f b xs = helper b xs
where
helper acc [] = acc

helper acc (x:xs) = helper (f acc x) xs

quiz = foldl (\xs x -> x : xs) [] [1,2,3]

O (A) Type error
O ®n23
O ©B21
O O)BEL01
O (M2l

78

The “fold-left” pattern

foldl f b [x1, x2, x3, x4]
==> helper b [x1, x2, x3, x4]
==> helper (f b x1) [x2, x3, x4]
==> helper (f (f b x1) x2) [x3, x4]
==> helper (f (f (f b x1) x2) x3) [x4]
==> helper (f (f (f (f b x1) x2) x3) x4) []
==> (f (f (f (f b x1) x2) x3) x4)

Accumulate the values from the left

For example:

foldl (+) © [1, 2, 3, 4]
==> helper © [1, 2, 3, 4]
==> helper (0 + 1) [2, 3, 4]
==> helper ((©0 + 1) + 2) [3, 4]
==> helper (((0 + 1) + 2) + 3) [4]
==> helper ((((© + 1) + 2) + 3) + 4) []
==> ((((@ + 1) + 2) + 3) + 4)

79

Left vs. Right

foldl f b [x1, x2, x3] ==> f (f (f b x1) x2) x3

foldr f b [x1, x2, x3] ==> f x1 (f x2 (f x3 b))

For example:

foldl (+) © [1, 2, 3] ==> ((@ + 1) + 2) + 3 -~

foldr (+) © [1, 2, 3] ==> 1+ (2 + (3 +0)) --

Different types!

foldl :: (b -> a -> b) -> b -> [a] -> b -- Left

foldr :: (a -> b -> b) -> b -> [a] -> b -- Right

-- Left

-- Right

Left

Right

80

Useful HOF: flip

-- you can write
foldl (\xs x -> x : xs) [] [1,2,3]

-- more concisely Like so:
foldl (flip (:)) [1[1,2,3]
What is the type of flip?

flip :: (a ->b ->¢c) ->b ->a ->c

81

Useful HOF: compose

-- you can write
map (\x -> f (g x)) ys

-- more concisely Llike so:

map (f . g) ys
What is the type of (.)?

(.) :: (b ->c) ->(a->b) ->a->c

82

Higher Order Functions

Iteration patterns over collections:

« Filter values in a collection given a predicate

« Map (iterate) a given transformation over a collection

« Fold (reduce) a collection into a value, given a binary
operation to combine results

Useful helper HOFs:

« Flip the order of function’s (first two) arguments
« Compose two functions

83

Higher Order Functions

HOFs can be put into libraries to enable modularity
. Data structure library implements map, filter, fold for its
collections
o generic efficient implementation
= generic optimizations: map f (map g xs) --> map
(f.g) xs
« Data structure clients use HOFs with specific operations

> no need to know the implementation of the collection

Enabled the “big data” revolution e.g. MapReduce, Spark

That’s all folks!

85

