CSE 110A: Winter 2020

Fundamentals of Compiler
Design |

Numbers, Unary Operations,
Variables

Owen Arden
UC Santa Cruz

Based on course materials developed by Ranjit Jhala

Lets Write a Compiler!

Our goal is to write a compiler which is a function:

compiler :: SourceProgram —> TargetProgram

In CSE 110A, TargetProgram is going to be a binary executable.

Lets write our first Compilers

SourceProgram will be a sequence of tiny “languages”

e Numbers
e.g.7,12,42..

o Numbers + Increment
e.g. add1(7), add1(add1(12)), ...

o Numbers + Increment + Decrement
e.g. add1(7), add1(add1(12)), subl(add1(42))

o Numbers + Increment + Decrement + Local Variables
e.g. let x = add1(7), y = add1l(x) in addl(y)

What does a Compiler look like?

. . Source String
An input source program is converted to Parse
an executable binary in many stages: AST

. *Check
« Parsed into a data structure called
an Abstract Syntax Tree

AST

¢Simplify

« Checked to make sure code is well- IR

formed (and well-typed) ¢0plimize
« Simplified into a R

convenient Intermediate Representation CodeGen
« Optimized into (equivalent but) faster

program

Object (.0)
« Generated into assembly x86
Runtime (.c) > Binary (.cxe)

« Linked against a run-time (usually Link

written in C) Compiler Pipeline

Simplified Pipeline

Source Strin;
Parse
1 ¥

AST
*Che(k

Goal: Compile source into executable
that, when run, prints the result of
evaluating the source.

AST

‘ Simplify

R

¢0p(imize

IR
CodeGen

Approach: Lets figure out how to write

« A compiler from the
input string into assembly,

« A run-time that will let us do the
printing.

ASM (:5)

2

Object (.0)
Next, lets see how to do (1) and (2)
using our sequence of adder languages.

Runtime (.c)

Adder-1

Numbers

e.g.7,12,42 ..

The “Run-time”

Lets work backwards and start with the run-time.

Here’s what it looks like as a C program main.c
#include <stdio.h>
extern int our_code() asm("our_code_label");

int main(int argc, charxx argv) {
int result = our_code();
printf("sd\n", result)
return 0;

¥
main just calls our_code and prints its return value our_code is (to be)
implemented in assembly.

Starting at label our_code_label with the desired return value stored
in register EAX, per the C calling convention

Test Systems in Isolation

Key idea in SW-Eng:

Lets test our “run-time” without even building the compiler.

Testing the Runtime: A Really Simple Example

Given a SourceProgram

42

We want to compile the above into an assembly file forty_two.s that looks like:

section .text
global our_code_label
our_code_label:

mov eax, 42

ret

Testing the Runtime: A Really Simple Example

For now, lets just write that file by hand, and test to ensure
object-generation and then linking works

nasm —f aout —-o forty_two.o forty_two.s
clang -g -m32 -o forty_two.run forty_two.o main.c
On a Mac use —f macho instead of —f aout

We can now run it:

$ forty_two.run
42

Hooray!

The “Compiler”

First Step: Types
To go from source to assembly, we must do:

Parse CodeGen
Text == AST P ASM (:5)

Our first step will be to model the problem domain using types.

Parse CodeGen
Text = AST ~———— ASM (:s)

Text Expr Asm

The “Compiler”

Lets create types that represent each intermediate value:

¢ Text for the raw input source
e Expr for the AST
» Asm for the output x86 assembly

Defining the Types: Text

Text is raw strings, i.e. sequences of characters

texts :: [Text]

texts =
["It was a dark and stormy night..."

, "I wanna hold your hand..."
) II12II
]

Defining the Types: Expr

We convert the Text into a tree-structure defined
by the datatype

data Expr = Number Int

Note: As we add features to our language, we will
keep adding cases to Expr.

Defining the Types: Asm

Lets also do this gradually as the x86 instruction set
is HUGE!

Recall, we need to represent

section .text
global our_code_label
our_code_label:

mov eax, 42

ret

Defining the Types: Asm

An Asm program is a list of
instructions each of which
can:

e Create a Label, or

* Move a Arg into
a Register

¢ Return back to the run-
time.

type Asm = [Instruction]

data Instruction
= IlLabel Text
| IMov Arg Arg
| IRet

Where we have

data Register
= EAX

data Arg
= Const Int —— a fixed number
| Reg Register -- a register

Second Step: Transforms

Ok, now we just need to write the functions:

— 1.
parse

Transform

1 Text —> Expr
-—- 2. Transform
compile Expr —> Asm
-- 3. Transform

asm i Asm —> Text

source-string into AST

AST into assembly

assembly into output-string

Second Step: Transforms

Pretty straightforward:

parse :: Text —> Expr
parse = parseWith expr
where

expr = integer

compile :: Expr —> Asm
compile (Number n) =

[IMov (Reg EAX) (Const n)
, IRet
]

asm :: Asm —> Text

asm is =

L.intercalate
ot ;

[instr i | i <=

Where instr is
a Text representation
of each Instruction

instr :: Instruction —> Text
instr (IMov al a2) =
printf "mov %s, %s"
(arg al) (arg a2)

Text
printf "%d" n

reg r

arg :: Arg —>
arg (Const n) =
arg (Reg r) =
reg :: Register —> Text
reg EAX = "eax"

Brief digression: Typeclasses

Note that above we have four separate functions that crunch different types to
the Text representation of x86 assembly:

asm 11 Asm —> Text

instr :: Instruction —> Text
arg 11 Arg —> Text

reg 11 Register —> Text

Remembering names is hard.

We can write an overloaded function, and let the compiler figure out the correct
implementation from the type, using Typeclasses.

The following defines an interface for all those types a that can be converted to
x86 assembly:

class ToX86 a where
asm :: a —> Text

Brief digression: Typeclasses

Now, to overload, we say that each of the
types Asm, Instruction, Arg and Register implements or has an instance
of ToX86

instance ToX86 Asm where
asm is = L.intercalate "\n" [asm i i<= is]

instance ToX86 Instruction where
asm (IMov al a2) = printf "mov %s, %s" (asm al) (asm a2)

instance ToX86 Arg where
asm (Const n) = printf "%d" n
arg (Reg r) = asm r

instance ToX86 Register where
asm EAX = “eax"

Note in each case above, the compiler figures out the correct implementation,
from the types...

20

Adder-2

Well that was easy! Lets beef up the language!

« Numbers + Increment
e e.g. add1(7), add1(add1(12)), ...

Repeat our Recipe
« Build intuition with examples,

« Model problem with types,
« Implement compiler via type-transforming-functions,

« Validate compiler via tests.

21

Example 1

How should we compile?
add1(7)
In English

* Move 7 into the eax register
e Add 1 to the contents of eax

In ASM
eax, 7
eax, 1

Aha, note that add is a new kind of Instruction

22

Example 2

How should we compile
addl(add1(12))
In English

* Move 12 into the eax register
o Add 1 to the contents of eax
e Add 1 to the contents of eax

In ASM
eax, 12
eax, 1
eax, 1

23

Compositional Code Generation

Note correspondence between sub-expressions of source
and assembly

add1(7) ——700 52

mov eax, 12
addl(add1(12)) ——padd eax,
add eax,

We will write compiler in compositional manner

« Generating Asm for each sub-expression (AST subtree)
independently,

« Generating Asm for super-expression, assuming the value of sub-
expression is in EAX

24

Extend Type for Source and Assembly

Source Expressions

data Expr = ...
| Addl Expr

Assembly Instructions

data Instruction

|iMd Arg Arg

Examples Revisited

srcl = "add1(7)"

expl = Add1l (Number 7)

asml = [IMov (EAX) (Const 7)
, IAdd (EAX) (Const 1)
1

src2 = "addl(add1(12))"

exp2 = Addl (Addl (Number 12))

asm2 = [IMov (EAX) (Const 12)
, IAdd (EAX) (Const 1)
; IAdd (EAX) (Const 1)

Transforms

Now lets go back and suitably extend the transforms:

—— 1. Transform source-string into AST
parse i1 Text —> Expr

—— 2. Transform AST into assembly
compile :: Expr -> Asm

—— 3. Transform assembly into output-string
asm 1 Asm —> Text

Lets do the easy bits first, namely parse and asm

Parse

parse :: Text -> Expr
parse = parseWith expr
expr :: Parser Expr

expr = try primExpr

<|> integer

primExpr :: Parser Expr
primExpr = Addl <$> rWord "add1l" %> parens expr

28

Asm

To update asm just need to handle case for TAdd

instance ToX86 Instruction where
asm (IMov al a2) = printf "mov %s, %s" (asm al) (asm a2)
asm (IAdd al a2) = printf "add %s, %s" (asm al) (asm a2)

Note
« GHC will tell you exactly which functions need to be extended
(Types, FTW!)
« We will not discuss parse and asm any more...

29

Compile

Finally, the key step is

compile :: Expr —> Asm
compile (Number n)
= [IMov (Reg EAX) (Const n)
]
compile (Addl e)
—— EAX holds value of result of ‘e’
= compile e
—— ... SO just increment it.
++ [IAdd (Reg EAX) (Const 1) |

30

Examples Revisited

Lets check that compile behaves as desired:

ghci> (compile (Number 12)
[IMov (Reg EAX) (Const 12) |

ghci> compile (Add1l (Number 12))
[IMov (Reg EAX) (Const 12)
; IAdd (Reg EAX) (Const 1)

ghci> compile (Addl (Add1l (Number 12)))
[IMov (Reg EAX) (Const 12)

, IAdd (Reg EAX) (Const 1)

, IAdd (Reg EAX) (Const 1)

I

31

Adder-3

You do it!

« Numbers + Increment + Double
e e.g.add1(7), twice(add1(12)), twice(twice(add1(42)))

32

Adder-4

o Numbers + Increment + Decrement + Local Variables
e e.g. let x = add1(7), y = add1l(x) in addl(y)

Local variables make things more interesting

Repeat our Recipe
« Build intuition with examples,
« Model problem with types,

« Implement compiler via type-transforming-functions,
« Validate compiler via tests.

33

Examples

Example: let1
let x = 10

in

Need to store 1 variable - x

Example: let2

let

in

10

|

|

<
mnn

Example: let3

let =10
= let =
in
in

Need to store 3 variables - 2, b, ¢ - but

1o at most 2 at a time
11
12 e Firsta, b, thena, c

« Don’t need b and c simultaneously

Need to store 3 variable - x, vy, z

Registers are Not Enough

A single register eax is useless:

* May need 2 or 3 or 4 or 5 ... values.

There is only a fixed number (say, \) of registers:

» And our programs may need to store more
than N values, so
» Need to dig for more storage space!

35

Memory: Code, Globals, Heap and Stack

Here’s what the memory - i.e. storage - looks like:

Low

Code

Global

Heap

v
High

Stack

36

Focusing on “The Stack”

Lets zoom into the stack region,
which when we start looks like this. | Low Address

[¢— esp

The stack grows downward
(i.e. to smaller addresses)

Local#3 | ebp - 12
Local#2 | ebp - 8

We have lots of 4-byte slots on the

Current Local#1 | ebp - 4
stack at offsets from the “stack Saved EBD | 4— eby
pointer” at addresses: Frame o i

: Return Addr.
Param #1 ebp + 8
[ESP - 4 % 1], Param #2_| ebp + 12

[ESP - 4 % 2], .., HighAdclress Param #3 ebp + 16

37

Mapping from variables to slots

The i-th stack-variable lives at address [ESP — 4 * i]
Required A mapping

« From source variables (x, v, 7 ...)

 To stack positions (1, 2, 3 ...)

Solution The structure of the lets is stack-like too...

« Maintain an Env that maps Id |-> StackPosition
* let x = el in e2adds x |-> itoEnv
o where i is current height of stack.

38

Example: Let-bindings and Stacks

let x = 1 —I]
in — [x |=>1]
let x = 1 —I]

= — [x |-> 1]

— Iy |2 x|>1]
in
—[z|-3, yI|>2 x|>1]

39

QuUIZ 7

At what position on the stack do we store variable

let =1
: A0
let b =
in -
in]
-
A1
B. 2
C.3
D. 4
E. not on stack!

?

http://tiny.cc/cse110a-stackvar-ind

40

QUIZ ,

At what position on the stack do we store variable

let =1
B let =
in
in
A1
B.2
c.3
D. 4
E. not on stack!

?

http://tiny.cc/cse110a-stackvar-grp

41

QuUIZ 7

At what position on the stack do we store variable

[]
let a =1 -— [a |—> 1]
= — [a |-> 1]
let = -— [b |—> 2, a |-> 1]
in — [a |—> 1]
-— [c |—=> 2, a|—>1]

in

?

42

QuUIZ

-— ENV(n)
let x = STUFF

-— [x |-> n+1, ENV(n)]
in OTHERSTUFF

—— ENV(n)

43
Strategy
At each point, we
have env that maps (previously
defined) Id to StackPosition
Variable Use Variable Definition
To compile x given env To compile let x = el in e2 we
¢ Move [ESP — 4 % i] into eax « Compile el using env (i.e. resu
(where env maps x |-> i) lting value will be stored
in eax)
e Move eax into [ESP - 4 * 1i]
« Compile e2 using env'
(where env' be env with x |-
ii.e. push x onto env at
position 1)
44

Example: Let-bindings to Asm

Lets see how our strategy works by example:

Example: let1 b

0 mov eax, 10

mov [esp - 4x1], eax
mov eax, [esp - 4x1]
add eax, 1

let x = 1
in
addl(x)

45

QUIZ: let2

When we compile esp - 4« 1], eax ;A

let x = 10
= esp 4 1 eax ;B
in
esp - 4+ 2], eax
The assembly looks like esp — 4« 2, eax b
eax, lesp - 4 + 2
eax, 10

esp - 4+1], eax ;
eax, lesp - 4+1
eax, 1

eax, 1
What .asm instructions shall we fill in for 727

http://tiny.cc/cse110a-let-ind

QUIZ: let2

When we compile esp - 4 + 1], eax A
eax, lesp — 4 1
let =10
= esp - 4 + 1], eax B
in
esp - 4 + 2], eax c
The assembly looks like esp - 4+ 2], eax D
eax, lesp — 4 2
eax, 10

esp - 4+1], eax ; sa.
eax, lesp - 4+1] ;
eax, 1 ;

eax, 1
What .asm instructions shall we fill in for 777

http://tiny.cc/cse110a-let-grp

Example: let3

Lets compile

let =10
= let =
in
in

Lets figure out what the assembly looks like!

eax, 10 ; RHS of let a = 10
esp 4x1 eax ; save a on the stack

48

Types

Now, we’re ready to move to the implementation!
Lets extend the types for Source Expressions
type Id = Text
data Expr = ...
—— "let x = el in e2" modeled as is "Let x el e2

| Let Id Expr Expr
| var Id

Lets enrich the Instruction to include the register-offset [esp — 4xi]
data Arg = ..

- [esp — 4xi]" modeled as ‘RegOffset ESP i’
| Reg0ffset Reg Int

49
Lets create a new Env type to track stack-positions of variables
data Env = [(Id, Int)!
data Maybe a = Nothing | Just a
lookupEnv :: Env —> Id -> Maybe Int
lookupEnv [] x = Nothing
lookupEnv ((y, n) : rest) x = if x ==y
then Just n
else
pushEnv i1 Env = Id —> (Int, Env)
pushEnv env x = (xn , env')
where
env' = (x, xn) : env
=1+
50

Environments

compile env (Let x el e2) =
compile env el
++ —— EAX hold the value of "x"
[IMov (RegOffset ESP xn) EAX |

++
compile env' e2
where
(xn, env') = pushEnv env x
compile env (Var x) = [IMov EAX (RegOffset ESP xn)]|
where
xn = case lookupEnv env x of

Just n —>n
Nothing —> error "variable out of scope"

51

Environments

API:

e Push variable onto Env (returning its position),
« Lookup variable’s position in Env

push :: Id —> Env —> (Int, Env)
push x env = (i, (x, i) : env)
where
i =1+ length env

lookup :: Id -> Env —> Maybe Int

lookup x [] = Nothing
lookup x ((y, i) : env)
| x ==y Just 1

52

Questions?

53

